inEllipsoid: Determine if a point is inside or outside an ellipsoid
Source:R/inEllipsoid.R
inEllipsoid.Rd
Determine if a point is inside or outside an ellipsoid based on a confidence level.
Arguments
- centroid
Numeric vector of centroids for each environmental variable.
- eShape
Shape matrix of the ellipsoid (can be a covariance matrix or a minimum volume ellipsoid).
- env_data
Data frame with the environmental data.
- level
Proportion of points to be included in the ellipsoids, equivalent to the error (E) proposed by Peterson et al. (2008).
Value
A data.frame with 2 columns:
"in_Ellipsoid": Binary response indicating if each point is inside (1) or outside (0) the ellipsoid.
"mh_dist": Mahalanobis distance from each point to the centroid.
Examples
# \donttest{
library(tenm)
data("abronia")
tempora_layers_dir <- system.file("extdata/bio",package = "tenm")
abt <- tenm::sp_temporal_data(occs = abronia,
longitude = "decimalLongitude",
latitude = "decimalLatitude",
sp_date_var = "year",
occ_date_format="y",
layers_date_format= "y",
layers_by_date_dir = tempora_layers_dir,
layers_ext="*.tif$")
abtc <- tenm::clean_dup_by_date(abt,threshold = 10/60)
future::plan("multisession",workers=2)
abex <- tenm::ex_by_date(abtc,train_prop=0.7)
varcorrs <- tenm::correlation_finder(environmental_data = abex$env_data[,-ncol(abex$env_data)],
method = "spearman",
threshold = 0.8,
verbose = FALSE)
#> Warning: the standard deviation is zero
future::plan("sequential")
mod <- tenm::cov_center(data = abex$env_data,
mve = TRUE,
level = 0.975,
vars = c("bio_05","bio_06","bio_12"))
in_elip <- tenm::inEllipsoid(centroid = mod$centroid,
eShape = mod$covariance,
env_data = abex$env_data[,c("bio_05","bio_06","bio_12")],
level = 0.975)
# 1 = Inside the ellipsoid; 0 = Outside the ellipsoid
print(in_elip)
#> in_Ellipsoid mh_dist
#> 1 1 1.5208724
#> 2 1 1.1441787
#> 3 1 4.5220005
#> 4 1 0.6103583
#> 5 1 0.8606538
#> 6 1 2.2926090
#> 7 1 2.7047455
#> 8 1 0.7001683
#> 9 1 1.4891237
#> 10 1 0.6497573
#> 11 1 0.9349719
#> 12 1 5.7577780
#> 13 1 0.6612829
#> 14 1 2.8157858
#> 15 1 5.0221566
#> 16 1 0.4349905
#> 17 1 0.9724952
#> 18 1 1.0877318
#> 19 1 0.1253176
#> 20 1 4.8374752
#> 21 1 1.9092557
#> 22 1 7.8798423
#> 23 1 1.8857259
#> 24 1 3.2271328
#> 25 1 6.6748831
#> 26 1 2.1050325
#> 27 1 3.4891962
#> 28 1 3.0973598
#> 29 1 0.8824323
#> 30 0 9.8155714
#> 31 1 1.7366118
#> 32 1 2.0110087
#> 33 0 13.4444583
#> 34 1 0.6095582
#> 35 1 4.3824177
#> 36 1 6.4840384
#> 37 1 5.6598968
#> 38 1 7.5065473
#> 39 1 3.8067799
#> 40 1 1.6922563
# }