Function to extract environmental data by date. It generates training and testing datasets using a random partition with a specified proportion.
Arguments
- this_species
Species Temporal Data object. See
sp_temporal_data
for details.- train_prop
Numeric. Proportion of data to use for training. For example, a train_prop of 0.7 means 70% of the data will be used for training and 30% for testing.
Value
An object of class sp.temporal.env that consists in a list of five elements:
"temporal_df": a temporal data.frame (temporal_df) with the following columns: latitude, longitude, year, layer_dates, layers_path, cell_ids_year, and environmental data.
"sp_date_var": Name of date variable.
"lon_lat_vars": Names of the longitude and latitude variables.
"layers_ext": Environmental layers extension.
"env_data": Environmental data of occurrences.
Examples
# \donttest{
library(tenm)
data("abronia")
tempora_layers_dir <- system.file("extdata/bio",package = "tenm")
abt <- tenm::sp_temporal_data(occs = abronia,
longitude = "decimalLongitude",
latitude = "decimalLatitude",
sp_date_var = "year",
occ_date_format="y",
layers_date_format= "y",
layers_by_date_dir = tempora_layers_dir,
layers_ext="*.tif$")
abtc <- tenm::clean_dup_by_date(abt,threshold = 10/60)
future::plan("multisession",workers=2)
abex <- tenm::ex_by_date(this_species = abtc,
train_prop=0.7)
future::plan("sequential")
# }