Skip to contents

csd_plot gives an estimate of the number of geographic clusters given a set of dispersal hypothesis and a suitability raster

Usage

csd_estimate(model, dispersal_steps = c(2, 4, 8, 16, 32, 64))

Arguments

model

A raster model or a setA object representing the suitability model

dispersal_steps

A numeric vector with elements representing the dispersal hypothesis to test.

Value

A list of length three. The first element contains the Connectivity- Suitability-Diagram information estimated for each element in the vector of dispersal_steps. The second is tbl_df object with a summary of the number of cluster of each dispersal step and the mean number of connected clusters. The last element is base plot showing the information contained in the tbl_df object.

Details

For more information about the Connectivity-Suitability-Diagram see bam_clusters

References

Soberón J, Osorio-Olvera L (2023). “A dynamic theory of the area of distribution.” Journal of Biogeography6, 50, 1037-1048. doi:10.1111/jbi.14587 , https://onlinelibrary.wiley.com/doi/abs/10.1111/jbi.14587. .

Author

Luis Osorio-Olvera & Jorge Soberón

Examples

# \donttest{
model_path <- system.file("extdata/Lepus_californicus_cont.tif",
                          package = "bamm")
model <- raster::raster(model_path)
model <- model > 0.7
csd_plot <- bamm::csd_estimate(model,
                         dispersal_steps=c(2,4,8))
#> 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |=======================                                               |  33%
  |                                                                            
  |===============================================                       |  67%
  |                                                                            
  |======================================================================| 100%

csd_plot$plot
# }